Definition 1\textbf{Definition 1} A collection TP(X)\mathcal{T}\subseteq\mathcal{P}(X) is called a topology on XX if it contains \varnothing and XX, and is closed under unions and finite intersections. XX is also called a topological space\textbf{topological space}. Any UTU\in\mathcal{T} is called an open set\textbf{open set}. Any VV is closed closed\textbf{closed} if XVX\setminus V is open.
Definition 2\textbf{Definition 2} For each xXx\in X, UTU\in\mathcal{T} is a neighborhood\textbf{neighborhood} of xx if xUx\in U.
Definition 2\textbf{Definition 2} Given AXA\subseteq X. 1.\\\textbf{1.} The closure\textbf{closure} of AA is A={BXBA,B is closed}\overline{A} = \bigcap\{B\subseteq X\,|\, B\supseteq A, B \text{ is closed}\}. 2.\\\textbf{2.} The interior\textbf{interior} of AA is A={CXCA,C is open}\overset{\circ}{A} = \bigcup\{C\subseteq X\,|\, C\subseteq A, C \text{ is open}\}. 3.\\\textbf{3.} The exterior\textbf{exterior} of AA is extA=XA\mathrm{ext}\,A = X\setminus A. 4.\\\textbf{4.} The boundary\textbf{boundary} of AA is A=X(AextA)\partial A = X\setminus(\overset{\circ}{A}\cup \mathrm{ext}\,A).
Definition 2\textbf{Definition 2} A collection BP(X)\mathcal{B}\subseteq\mathcal{P}(X) is called a topological basis if 1. \\ \textbf{1. } X=BX = \bigcup \mathcal{B}. 2. \\\textbf{2. } B1,B2B,xB1B2,B3B\forall B_1,B_2\in \mathcal{B},\, \forall x \in B_1\cap B_2,\,\exists B_3\in\mathcal{B} such that xB3B1B2x\in B_3\subseteq B_1\cap B_2.
Theorem 1.1\textbf{Theorem 1.1} Find topology from basis.\textbf{Find topology from basis.} The set TB={UXxU,BB:xBU}={CCB}\\\begin{aligned} \mathcal{T}_\mathcal{B} &= \{U \subseteq X \,|\, \forall x\in U,\,\exists B\in\mathcal{B}: x\in B\subseteq U \} \\ &= \left\{\bigcup\mathcal{C} \,|\, \mathcal{C}\subseteq\mathcal{B} \right\} \end{aligned}\\ is a topology called the topology generated by B\mathcal{B}.
Theorem 1.2\textbf{Theorem 1.2} Find basis from topology.\textbf{Find basis from topology.} CP(X)\mathcal{C}\in\mathcal{P}(X) is a topological basis of XX if xUT,CC\forall x\in U \in\mathcal{T},\,\exists C\in\mathcal{C} such that xCUx\in C \subset U.
Theorem 1.3\textbf{Theorem 1.3} Compare two topologies.\textbf{Compare two topologies.} TB1TB2xB1B1,B2B2:xB2B1\\\mathcal{T}_{\mathcal{B}_1}\subseteq\mathcal{T}_{\mathcal{B}_2} \Leftrightarrow \forall x\in B_1\in\mathcal{B}_1,\exists B_2\in\mathcal{B}_2 : x\in B_2\subseteq B_1.
Definition 3\textbf{Definition 3} An order topology\textbf{order topology} is whose basis contains elements of the form (a,b),[a0,b),(a,b0](a,b), [a_0,b), (a,b_0], where a,bXa,b\in X, a0a_0 is the smallest element if any, b0b_0 is the largest element if any.