Generally, vector space is an algebraic structure specified by the set of vectors VV and the set of scalars F\mathbb{F}. So we concern about the homomorphism between two vector spaces in the normal sense - operation preservation. Concretely, if f:VWf: V\to W is a homomorphism, then it preserves vector addition and scalar multiplication.f(x+y)=f(x)+f(y),x,yVf(x+y) = f(x)+f(y),\,\,\forall x,y\in Vf(ax)=af(x),xV,cFf(ax) = af(x),\,\,\forall x\in V, c\in\mathbb{F}The above properties are similar to that of linear function in analysis. So we use the term "linear transformation" interchangeably with "homomorphism" in the case of vector spaces.
Definition. A linear transformation between two vector spaces VV and WW is a mapping f:VWf: V\to W satisfying f(x+y)=f(x)+f(y),x,yVf(x+y) = f(x)+f(y),\,\,\forall x,y\in V f(ax)=af(x),xV,cFf(ax) = af(x),\,\,\forall x\in V, c\in\mathbb{F}
For example, let P3[R]P_3[\mathbb{R}] and P2[R]P_2[\mathbb{R}] be R\mathbb{R} vector spaces of polynomials of degree not exceeding 3 and 2, repectively. The derivativeddx:P3[R]P2[R]\dfrac{\mathrm{d}}{\mathrm{d}x} : P_3[\mathbb{R}] \to P_2[\mathbb{R}] is a linear transformation.
Let β={β1,...,βm}\beta=\{\beta_1,...,\beta_m\} and γ={γ1,...,γn}\gamma=\{\gamma_1,...,\gamma_n\} are bases for VV and WW, respectively. Then each f(β1),...,f(βm)Wf(\beta_1),...,f(\beta_m)\in W can be express uniquely as linear combinations of γ1,...,γn\gamma_1,...,\gamma_n, concretely f(βi)=j=1naijγi,j=1,...,n.f(\beta_i) = \sum\limits_{j=1}^n a_{ij}\gamma_i,\,\,j=1,...,n. In terms of matrix product,(f(β1)f(βn))=(a11a1nam1amn)(γ1γn). \left(\begin{array}{c} f(\beta_1) \\ \vdots \\ f(\beta_n) \\\end{array}\right) = \left(\begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \\ \end{array}\right) \left(\begin{array}{c} \gamma_1 \\ \vdots \\ \gamma_n \\\end{array}\right). The matrix (aij)(a_{ij}) is called the matrix of ff relative to bases β\beta and γ\gamma, denoted by [f]βγ[f]_\beta^\gamma. If β=γ\beta=\gamma, we simply denote it [f]β[f]_\beta. For some vector v=bmβm+...+bmβmVv = b_m\beta_m +...+b_m\beta_m\in V, we have f(v)=(b1...bm)(f(β1)f(βm))=(b1...bn)(a11a1nam1amn)(γ1γn).f(v) = \left(\begin{array}{ccc} b_1 & ... & b_m \\ \end{array}\right) \left(\begin{array}{c} f(\beta_1) \\ \vdots \\ f(\beta_m) \\\end{array}\right) = \left(\begin{array}{ccc} b_1 & ... & b_n \\ \end{array}\right) \left(\begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \\ \end{array}\right) \left(\begin{array}{c} \gamma_1 \\ \vdots \\ \gamma_n \\\end{array}\right). Hence [f(v)]γ=[v]β[f]βγ[f(v)]_\gamma = [v]_\beta[f]_\beta^\gamma.
Next, we will show that for given bases β\beta for VV and γ\gamma for WW, for each linear transformation ff, there is an m×nm\times n representation matrix for ff and vice versa. This means there is a bijection from L(V,W)\mathcal{L}(V,W) to Mm×nF\mathcal{M}_{m\times n}^\mathbb{F}. Moreover, the bijection is an isomorphism, meaning that almost all theorems on linear transformation have a matrix version and so far, we have formalized matrix by linear transformation, which is a more systematic approach.
Theorem. For given bases β\beta for VV and γ\gamma for WW, the mapping Φ:L(V,W)Mm×nFf[f]βγ\begin{aligned} \Phi : \mathcal{L}(V,W) &\to \mathcal{M}_{m\times n}^\mathbb{F} \\ f &\mapsto [f]_\beta^\gamma \end{aligned} is an isomorphism.
Proof. For each transformation, the matrix has been constructed uniquely as shown above. Now for each matrix A=(aij)Mm×nFA = (a_{ij})\in \mathcal{M}_{m\times n}^\mathbb{F}, define ff such that f(βi)=j=1naijγj,1im,1jn.f(\beta_i) = \sum\limits_{j=1}^n a_{ij}\gamma_j,\,\, 1\le i \le m, 1\le j \le n. We need to show that ff is unique. Suppose that there is gg such that g(βi)=j=1naijγj,1im,1jn,g(\beta_i) = \sum\limits_{j=1}^n a_{ij}\gamma_j,\,\, 1\le i \le m, 1\le j \le n, we can easily see that f(v)=g(v),vVf(v)=g(v),\,\,\forall v\in V. Therefore, Φ\Phi is a bijection. To show that Φ\Phi is an isomorphism, we have to point out that Φ(cf+g)=c[f]βγ+[g]βγ.\Phi(cf+g) = c[f]_\beta^\gamma + [g]_\beta^\gamma. Indeed, since (cf+g)(v)=cf(v)+g(v)(cf+g)(v) = cf(v) + g(v), we have [(cf+g)(v)]γ=c[f(v)]γ+[g(v)]γ=c[v]β[f]βγ+[v]β[g]βγ=[v]β[cf]βγ+[v]β[g]βγ=[v]β([cf]βγ+[g]βγ)=[v]β([cf+g])βγ.[(cf+g)(v)]_\gamma = c[f(v)]_\gamma + [g(v)]_\gamma = c[v]_\beta[f]_\beta^\gamma + [v]_\beta[g]_\beta^\gamma = [v]_\beta[cf]_\beta^\gamma + [v]_\beta[g]_\beta^\gamma = [v]_\beta([cf]_\beta^\gamma + [g]_\beta^\gamma) = [v]_\beta([cf + g])_\beta^\gamma. Hence [cf+g])βγ[cf + g])_\beta^\gamma is the matrix of cf+gcf+g relative to bases β\beta and γ\gamma.